Твердость: 120 лет

С. А. Федосов

что же это такое;методы измерения.

Метод Герца (1892)

 $P_0 = 3/2p_m = \left(\frac{6FE_r^2}{\pi^3 R^2}\right)^{1/3}$

где p_m – среднее контактное давление, E_r – приведенный модуль упругости контактирующих тел: $E_r = [(1 - v_m^2) / E_m + (1 - v_i^2) / E_i]^{-1}$, v - коэффициент Пуассона, E_m и E_i модули упругости

материалов образца и индентора.

Опыты Ауэрбаха; (1891-1896)

критика Губера (1904)

HRA = $100 - \Delta h / 0,002$ **HRB** = $130 - \Delta h / 0,002$ **HRC** = $100 - \Delta h / 0,002$

Метод Кубасова

(1909)

 $\mathbf{HV} = F / S_{\text{конт.}}$

TIV метод 🔶 🔶

Метод Кнупа

Метод Мейера

(1908)

 $\mathbf{HB} = F / S_{\text{проекц}}$

Примеры отпечатков микротвердомера

Сварочная дамасская сталь ×1000

Поперечный шлиф сварной точки, полученной точечной лазерной сваркой ×100

Метод Либа (1975) $HL = (V / V') \times 1000$ $A_{S} = f_{I} \left(E_{i}, v_{i}, E_{m}, v_{m}\right) \times f_{2} \left(\Delta f / f_{0}\right)$ $HV = HV_{UCI} \left(\frac{1/E_{n} + 1/E_{i}}{1/E_{m} + 1/E_{i}}\right)^{2}$

Кинетический метод (Dept Sensing Indentation Testing - DSI)

Нагрузочно-разгрузочные кривые индицирования: 0А – нагрузочная ветвь; AD – реальная разгрузочная ветвь; AB и AC гипотетические разгрузочные ветви при, соответственно, полностью пластическом – и полностью упругом восстановлении отпечатков; *F* – индентирующая сила, *h* – заглубление индентора

 $S = \frac{dF_u}{dh_u} = \frac{2}{\sqrt{\pi}} E_r \sqrt{A_P}$

Ультрамикротвердомер DUH-201S Shimadzu

Провели индентирование, измерили твердость.

Что дальше?

Связь твердости с прочностью

Уравнение Бринелля:

 $\sigma_u = 0,346$ **HB** где σ_u – условный предел прочности, HB – твердость по Бриннелю.

Уравнение Tabor-Марковца:

 $\mathbf{H} = C \sigma_r$

где H – твердость по Виккерсу или Бриннелю, а σ_r – напряжение при одноосной "репрезентативной" деформации e_r ; коэффициент C = 3...3,2.

Уравнение Зайцева

 $\mathbf{H} \approx 2,94 \, \sigma_{e} (1 - \delta_{p}^{2})$

где б_{р -} равномерное удлиннение при испытании на растяжение.

Модель гидростатического ядра Джонсона:

$$p_m = \frac{2}{3}\sigma_r \left[1 + \ln\left(\frac{1}{3}\frac{Etg\alpha}{\sigma_y}\right) \right]$$

откуда **HV** = $0.93p_m \approx 2.8\sigma_r$, или **H**_{IT} $\approx 3.0\sigma_r$

Для материалов с иррегулярным законом твердения: (получено МКЭ моделированием)

$$\mathbf{H} = K_1 \sigma_l + K_2 \sigma_h ,$$

где σ_l и σ_h – напряжения, соответствующие одноосной деформации соответственно в 0,02 и 0,35, а *K* – коэффициенты: $K_l = 1$, $K_2 = 1,4$ для индентора Виккерса и 1,55 для эквивалентного конического индентора.

ABI метод Хаггага (Haggag)

 $e_p = 0,2 d_p / D;$ $\sigma_I = 4F / \pi d_p^2 \delta;$ где: $d_p = \{0,5 C^* D [h_p^2 + (d_p / 2)^2] / [h_p^2 + (d_p / 2)^2 - h_p D] \}^{1/3};$ $C^* = 5,47 F (1/E_i + 1/E_s);$

 $\phi = e_p E^2 / 0.43\sigma_I;$ $\delta_{max} = (1,12...2,87)\alpha_m;$ $\tau = (\delta_{max} - 1,12) / \ln (27).$ Здесь σ_I – истинное напряжение; e_p – истинная пластическая деформация; D – диаметр шарового индентора; d_p и h_p – диаметр и глубина восстановленного отпечатка; δ - параметр, зависящий от стадии развития пластической зоны под индентором; α_m - параметр, связанный с чувствительностью материала образца к скорости нагружения (например, для материалов с низкой чувствительностью к скорости нагружения $\alpha_m = 1,0$).

Измерение остаточных напряжений

400 200 0 200 100 -100 -300-200-100 Applied σ^{R} (MPa)

Определение параметра K_{Ic} у хрупких материалов

Геометрические параметры, используемые для расчета К_кпри индентировании хрупких материалов. Здесь с – радиус трещины, 2a = d – диагональ отпечатка Виккерса: а) полукруговая и b) бикруговая трещины.

№ п/ п	Тип трецин ы	Расчетная формула для K _{1c}	Литер атурн ый источ ник
1	М	$0,016 (E/H)^{1/2} (F/c^{3/2})$	[188]
2	М	$0,16 H a^{1/2} (c/a)^{-3/2}$	[189]
3	М	$H a^{1/2} (E/H)^{0,4} 10^x$	[190]
4	М	$0,067 H a^{1/2} (E/H)^{0,4} (c/a)^{-3/2}$	[191]
5	Р	$0,018 H a^{1/2} (E/H)^{0,4} (c/a - 1)^{-1/2}$	[191]
6	Р	$0,073 H a^{1/2} (E/H)^{0,4} (c/a)^{-1,56}$	[192]
7	Р	$0,0889 (HF/4l)^{0,5}$	[193]
8	Р	$0,015 (l/a)^{-0.5} (E/H)^{2/3} (F/c^{3/2})$	[194]
9	М	$0,01 (E/H)^{2/3} F/c^{3/2}$	[195]
10	М	$0,028 (H a^{1/2}) (E/H)^{1/2} (c/a)^{-1/2}$	[196]

Тип трещин: М – полукруговая монотрещина, Р – бикруговая политрещина Палмквиста; E – модуль Юнга; H – твердость; F – индентирующая сила; x = f(c/a); l = c - a.

Оценка термостойкости

Определение адгезии покрытий

Фотография накола индентором Роквелла на термозащитном покрытии лопаток турбин

«Мягкое покрытие на жесткой подложке»:

«Жесткое покрытие на мягкой подложке»

$$G = \frac{0,627H_f^2 t(1-v_f^2)}{E_f [1+v_f + 2(1-v_f)H_f R^2 / F]^2}$$

где H_f - твердость покрытия, t толщина покрытия, R - радиус линзы отслоения (граничной трещины), F нагрузка, а v_f и E_f - коэффициент Пуассона и модуль упругости материала покрытия

<u>Энергия адгезии DGEBA покрытия на</u>

силикатном стекле (эксперимент):

Индентированием25,2 (±8,7) Дж/м²двойной консольной балки8,1 (±1,7)четырехточечного изгиба15,0 (±0,4)

$$\frac{2G(1-\nu)^{2}}{E^{eff}} = \begin{cases} \varepsilon_{r} + \nu\varepsilon_{\theta} - \frac{(1-\nu^{2})\varepsilon_{\theta} \left[1 - \left(\frac{R_{i}}{R}\right)^{2}\right]}{1-\nu + (1+\nu)\left(\frac{R_{i}}{R}\right)^{2}} \end{cases}$$
$$2G = \frac{3(1-\nu^{2})(\sigma_{0}^{TGO} - \sigma_{0}^{TBC})^{2} t_{TGO}^{2}}{(t^{TGO} + t^{TBC})E^{TBC}}$$

PIPE:
$$K = \sqrt{\frac{GE_r^{TGO}(1-\alpha)}{1-\beta^2}}$$
 $\alpha = \frac{E_r^{TGO} - E_r^{Bondcoat}}{E_r^{TGO} + E_r^{Bondcoat}}$

$$\beta = \frac{\mu^{TGO} (k^{Bondcoat} - 1) - \mu^{Bondcoat} (k^{TGO} - 1)}{\mu^{TGO} (k^{Bondcoat} + 1) + \mu^{Bondcoat} (k^{TGO} + 1)} \qquad \mu = \frac{E}{2(1 + \nu)}$$

(Совпадение с табличными данными по порядку величины)

Определение адгезионных свойств волокнистых композитов

$$u = F^2 / 4\pi^2 r^3 \tau E_f - 2\Gamma / \tau,$$

где 2Γ - поверхностная энергия разрушения на единицу площади раздела, c - длинна срыва адгезии (оценка c была произведена из баланса энергий). В отсутствии адгезии (Γ = 0) c = l

При учете деформации матрицы:

волокна композита

Здесь, $n = \sqrt{\frac{2k}{rE}}$ где k – глобальная жесткость, такая, что $\tau = kw.$, $k = \frac{G}{r\log\left(\frac{R_{eq}}{P}\right)}$ при условии, если матрицу представить в виде цилиндра радиусом R_{eq} , вне которого еб деформации равны 0 (в первом приближении R_{eq} может быть принят равным среднему расстоянию между соседними волокнами). При этом длина срыва адгезии $c = (r\sigma_0/2\tau_d) - 1/n$, а $\sigma_d = 2\tau_d/rn$.

17

Определение пористости

В общем случае: $\sigma_{\rho} = \Phi \sigma_{\theta}$

где σ_{ρ} есть напряжение пластической деформации при одноосном сжатии материала с относительной плотностью ρ , σ_0 - то же в монолитном состоянии, а $\Phi = f(\rho)$ - функция относительной плотности.

Так как $H \sim \sigma$, то определив относительную твердость H_{ρ}/H_{θ} , можно рассчитать ρ , если известно Φ .

$$\Phi = \rho;
\Phi = \rho^{2,5};
\Phi = \rho^{3,56};
\Phi = exp [-a (1 - \rho)];
\Phi = (2\rho^2 - 1)^{0,5};
\Phi = (\rho - \rho_0) / (1 - \rho_0);$$

Сравнение различных функций интенсификации напряжений в пористых телах Ф с экспериментальными данными

(принято $\rho_0 = 0,6$)

Осложняющие факторы

Размерный эффект

Влияние нагрузки на измеренную твердость технического железа

Основные причины: і) влияние внешних вибраций; іі) наклеп поверхности образца при полировке; ііі) увеличение относительной погрешности измерения размеров отпечатка; iv) большей относительной долей упругого восстановления для маленьких отпечатков; v) индентирование "бездислокационных" объемов с твердостью, приближающейся к теоретическому пределу, когда размер отпечатка становится соизмерим с междислокационными расстояниями; vi) наклеп во время индентирования; vii) влияние границ зерен и включений; viii) увеличение относительного влияния несовершенства индентора при уменьшении отпечатка, большее для индентора Виккерса, меньшее для Берковича.

Фазовые превращения под индентором

Величина пластической деформации под индентором

<u>Классика:</u>	
Tabor	8%
Марковец	6%
(результаты получены анализом впечатанных сеток)	
Геометрический анализ на основе формулы Марковца	6,2%
Регрессионная подгонка экспериментальных результатов к уравнению Tabor-a	8-11%
Модель гидростатического ядра Джонсона	7%
2D МКЭ моделирование Большакова	10%
ЗD МКЭ моделирование Гианнакопоулоса (за рубежом признано стандартом de-facto)	29-30%
Безразмерный П-анализ	3,3%
МКЭ моделирование Чаудхри	2536 %
Эксперименты по индентированию меди Чаудхри	56 % (у поверхности) 2536 % (у вершины) 200% (под вершиной)