Программное обеспечение ScanView

Руководство пользователя

Санкт-Петербург 2015

СОДЕРЖАНИЕ

1.	ВНЕШНИЙ ВИД ПРОГРАММЫ						
	1.1 Изменение размера и положения окна с отображением измеряемой толщины						
	1.2 Изменение единиц измерения по осям времени и амплитуды						
	 1.3 Настройки параметров формирования, обработки и отображения сигналов 						
		1.3.1	Включение/выключение АРУ	6			
		1.3.2	Выбор режима измерения толщины, работа со стробами	6			
		1.3.3	Изменение количества накоплений	8			
		1.3.4	Выбор вида отображения А-скана	9			
		1.3.5	Выбор числа импульсов в пачке	9			
	1.4 Сохранение результатов						
	1.5 Масштабирование А-скана и его перемещение1						
2.	МЕНЮ «ИЗМЕРЕНИЕ» 12						
	2.1 Режим измерения толщины						
	2.2 Режим дефектоскопа12						
	2.3 Режим калибровки						
		2.3.1	Выбор материала из списка	. 14			
		2.3.2	Калибровка с введением известной толщины объекта контроля	15			
		2.3.3	Калибровка с введением скорости звука	.15			
3.	МЕНЮ «НАСТРОЙКИ»						

1. ВНЕШНИЙ ВИД ПРОГРАММЫ

Программа ScanView запускается автоматически при подключении прибора к планшету или другому устройству с установленной программой. Также пользователь может запустить программу вручную. При первом запуске открывается окно, показанное на рис. 1. При последующих запусках программа открывается с того окна, на котором она завершилась.

Рис. 1. Внешний вид программы ScanView

На верхней панели инструментов находятся следующие элементы управления:

- Кнопки «Сохранить», «Измерение» и «Настройки»;
- Кнопка , которая позволяет временно остановить измерение толщины и перевести толщиномер AIR в режим пониженного энергопотребления.

Также на верхней панели располагается индикатор заряда аккумуляторной батареи толщиномера AIR

В верхней части программы располагается окно с отображением измеряемой толщины.

1.1 Изменение размера и положения окна с отображением измеряемой толщины

В программе ScanView реализована возможность изменять размер окна, в котором отображается значение измеренной толщины. Для этого необходимо дважды нажать пальцем на это окошко. В результате откроется окно, показанное на рис. 2, в котором можно выбрать один из трёх вариантов отображения толщины.

Рис. 2. Выбор размера окна с измеряемой толщиной

По умолчанию установлен «Маленький» размер окна. Варианты отображения окна с толщиной показаны на рис. 3.

Рис. 3. Варианты отображения окна с измеряемой толщиной

Положение окна с отображаемой толщиной можно изменять. Для этого нужно нажать пальцем на окно с отображаемой толщиной, и удерживая касание, переместить его в любое удобное для пользователя место.

1.2 Изменение единиц измерения по осям времени и амплитуды

В программе ScanView реализована возможность изменять единицы измерения по осям времени и амплитуды. Для изменения единиц измерения необходимо коснуться пальцем нужной оси и выбрать в появившемся окне единицу измерения. Внешний вид окон с выбором единиц измерения показан на рис. 4.

-	9,2мкС 9% 16,7мкС 11%	💾 сохранить 🝈 измерение 🦽 настройки		9)0мкс -28,6д6 16,8мкС -23,9д5	💾 сохранить 👘 измерение 🦽 настройки	90%
100 95 90		16,28	АРУ Вкл 🗹	-1	15,74	АРУ Вкл 🗹
80 75 70			Режим 2 Строба	-2		Режим 2 Строба
65 60 55	-		Накопления 64	-4 Шкала Проценты		Накопления 64
45 40 35		Шкала	Вид сигнала Фильтр	Децибеллы		Вид сигнала Фильтр
30 25 20		Микросекунды	Импульсы 2	вольты		Импульсы 2
10 5 0	hann	Дюймы	Частота 4,2 МГЦ	In Manual		Частота 4,2 МГЦ
%		20 22 24 26 28 30 32			20 22 24 26 28 30 32	

Рис.4. Выбор единиц измерения

Пользователь имеет возможность устанавливать следующие единицы измерения:

- Для горизонтальной оси время в микросекундах, расстояние в миллиметрах или дюймах;
- Для вертикальной оси относительные единицы в процентах или децибелах, абсолютные единицы в вольтах.

1.3 Настройки параметров формирования, обработки и отображения сигналов

В программе ScanView реализована возможность изменять параметры формирования, обработки и отображения сигналов, такие как:

- Выключение АРУ;
- Режим измерения толщины;
- Количество накоплений;
- Внешний вида А-скана;
- Число импульсов в пачке зондирующего сигнала;
- Частота зондирующего сигнала.

Изменение перечисленных параметров осуществляется при помощи меню с настройками. Чтобы открыть меню, следует коснуться пальцем области с индикатором усиления и, не отпуская пальца, потянуть эту область влево, выдвинув, тем самым, меню с настройками (см. рис. 5).

Чтобы скрыть меню, следует аналогичным образом сдвинуть его вправо.

Рис. 5. Как открыть и свернуть обратно меню с настройками параметров формирования, обработки и отображения сигналов

1.3.1 Включение/выключение АРУ

Для того чтобы выключить автоматическую регулировку усиления, необходимо снять галочку АРУ в меню с настройками. После отключения АРУ области В индикации усиления становится ползунок активным И подсвечивается цветом. Изменение синим усиления осуществляется перемещением ползунка вверх-вниз (см. рис. 6).

Рис. 6. Ручная регулировка усиления

1.3.2 Выбор режима измерения толщины, работа со стробами

По умолчанию в программе ScanView включен автоматический режим измерения толщины, т.е. толщина рассчитывается по специальному алгоритму и не зависит от пользователя. Кроме автоматического режима, в программе ScanView имеется возможность включения ручного режима измерения толщины, который реализован в двух вариантах:

- Режим измерения толщины по одному стробу;
- Режим измерения толщины по двум стробам.

Режим измерения толщины по одному стробу

В этом режиме оператору предоставляется возможность устанавливать один строб. Для этого строба осуществляется поиск максимума огибающей сигнала. Найденный максимум пересчитывается в измеряемую толщину с учётом заданной скорости звука (скорость звука можно менять, см п. 2.3.8).

Для того чтобы выбрать режим измерения толщины по одному стробу, нужно коснуться пальцем окна «Режим», расположенного в меню с настройками параметров формирования, обработки и отображения сигналов. В результате откроется окно, показанное на рис. 7, в котором следует выбрать режим «1 строб».

Рис. 7. Выбор режима измерения толщины

После выбора данного режима на экране появляется один строб, который можно перемещать по А-скану и изменять его длину. Внешний вид строба показан на рис. 8.

Рис. 8. Работа со стробом

Для перемещения строба нужно прикоснуться пальцем к центру строба и, удерживая касание, переместить строб в нужное положение. Для изменения

длины строба нужно прикоснуться одним пальцем к центру строба, а другим пальцем совершать горизонтальное перемещение по экрану (см. рис. 8).

Координаты найденного в стробе максимума отображаются в левом верхнем углу экрана (см. рис. 9).

Рис. 8. Отображение координат найденного максимума в стробе

Режим измерения толщины по двум донным

В этом режиме пользователю предоставляется возможность оперировать двумя стробами на A-скане. Измеренная толщина вычисляется по временной разности положений максимума в стробе 1 и максимума в стробе 2. Найденная разность пересчитывается в толщину при помощи заданной скорости звука. Так же, как для режима с одним стробом, в верхнем левом углу программы отображаются координаты максимума в каждом стробе. При перемещении стробов на экране отображаются временные координаты начала и конца для каждого из строба. Управление стробами осуществляется так же, как описано в предыдущем пункте.

1.3.3 Изменение количества накоплений

По умолчанию в толщиномере AIR используются 32 накопления полезного сигнала, т.е. расчёт толщины происходит по усредненной выборке значений. При работе с большим зазором или с плохим качеством поверхности рекомендуется увеличивать количество накоплений, для повышения надёжности и точности измерений.

В приборе AIR реализована возможность изменять число накоплений от 1 до 1024. Для того чтобы изменить число накоплений, нужно прикоснуться пальцем к окну «Накопления». В результате откроется окно, показанное на рис. 10, в котором нужно выбрать требуемое количество накоплений.

Рис. 10. Выбор количества накоплений

Необходимо учитывать, что при увеличении количества накоплений увеличивается время измерения.

1.3.4 Выбор вида отображения А-скана

В программе ScanView реализована возможность отображения временной развёртки толщиномера AIR в трёх видах: исходный сигнал, детектированный сигнал и сигнал, прошедший согласованный фильтр. Режим отображения изменяется при касании пальцем на окно «Вид сигнала». Все три варианта отображения показаны на рис. 11.

Рис. 11. Варианты представления А-скана в программе ScanView

1.3.5 Выбор числа импульсов в пачке

Оператор может изменять количество импульсов в пачке зондирующего сигнала. По умолчанию в программе ScanView установлено два импульса в пачке. При измерении толщин более 40 мм с плохим качеством поверхности следует увеличить число импульсов в пачке до трех. При измерениях толщин менее 2 мм следует уменьшить число импульсов в пачке до одного.

Для изменения числа импульсов в пачке нужно коснуться пальцем окна «Импульсы». В результате откроется окно, показанное на рис. 12, в котором нужно выбрать необходимое число импульсов.

Рис. 12. Выбор количества импульсов в пачке зондирующего сигнала

1.4 Сохранение результатов

Оператор в любой момент работы с программой может сохранить окно программы с А-сканом и толщиной в виде картинки, а также в виде текстового файла с данными. Для сохранения данных нужно коснуться пальцем кнопки «Сохранить» (см. рис. 13).

Рис. 13. Сохранение данных

В результате откроется окно, показанное на рис. 14, в котором следует ввести имя сохраняемого файла и задать формат сохранения: текстовый файл *.crv, картинка *.png или оба варианта одновременно. Для выбора формата сохраняемого файла следует установить галочку в соответствующем поле.

Рис. 14. Сохранение данных

Файлы хранятся в директории «MyFiles», в которой создаётся подпапка с именем оператора. Имя оператора и рабочую папку можно изменить в настройках программы (см. п. 3).

1.5 Масштабирование А-скана и его перемещение

В программе ScanView реализована возможность удобного и быстрого масштабирования графиков. Для увеличения некоторой области на экране достаточно коснуться двумя пальцами экрана и растянуть изображение (см. рис. 15).

Рис. 15. Масштабирование графиков

Для возврата к нормальному отображению достаточно дважды коснуться экрана в любой точке.

2. МЕНЮ «ИЗМЕРЕНИЕ»

При касании пальцем кнопки «Измерение» появляется окно, показанное на рис. 16.

Рис. 16. Выбор между измерением толщины, режимом дефектоскопа и режимом калибровки

Окно позволяет выбрать один из трёх режимов измерения:

- Режим измерения толщины (установлен по умолчанию);
- Режим калибровки;
- Режим дефектоскопа.

2.1 Режим измерения толщины

Режим измерения толщины устанавливается по умолчанию и предназначен для измерения толщины объекта контроля.

2.2 Режим дефектоскопа

В программе ScanView реализована возможность использования толщиномера AIR как дефектоскопа для поиска язвенной коррозии.

Внешний вид программы ScanView, работающей в режиме дефектоскопа, показан на рис. 17.

Рис. 17. Режим дефектоскопа

В этом режиме экран программы разбивается на два окна, расположенных друг под другом:

- Верхнее с отображением А-скана и двух стробов;
- Нижнее отображением параметра «Р».

Контроль на наличие язвенной коррозии осуществляется на объекте контроля с фиксированной толщиной. Первый строб необходимо расположить так, чтобы он захватывал первый донный. Второй строб необходимо расположить между первым и вторым донным так, чтобы он не накладывался на них.

Параметр «Р» представляет собой отношение амплитуды максимума в стробе 2 к амплитуде максимума в стробе 1. При отсутствии дефектов это отношение близко к 0, поскольку между донными нет каких-либо эхосигналов. При наличии дефекта типа язвенной коррозии амплитуда первого донного падает и, вместе с этим, между донными появляются слабые сигналы, обусловленные отражением от дефекта. При этом значение параметра «Р» возрастает.

В нижнем окне имеются два порога, которые могут быть заданы пользователем (красный и жёлтый треугольник). Превышение порога вследствие наличия дефекта сопровождается звуковым сигналом. Звуковые сигналы для двух порогов могут быть заданы в настройках программы.

2.3 Режим калибровки

Внешний вид программы, работающей в режиме калибровки, показан на рис. 18.

Рис. 18. Режим калибровки

В программе ScanView реализованы три режима калибровки:

- Выбор материала объекта контроля из списка;
- Калибровка с введением известной толщины объекта контроля;
- Калибровка с введением скорости звука.

2.3.1 Выбор материала из списка

Для выбора материала объекта контроля из списка нужно коснуться пальцем надписи «Материал» (см. рис. 18). В результате откроется окно, показанное на рис. 19, в котором можно выбрать материал из списка.

Рис. 19. Выбор материала объекта контроля

Толщиномер AIR использует <u>поперечную волну</u>, её среднее значение для стали составляет <u>3250 м/с</u>.

Программа позволяет дополнять список материалов самостоятельно.

2.3.2 Калибровка с введением известной толщины объекта контроля

Для калибровки скорости звука по известной толщине объекта контроля нужно поставить толщиномер AIR на контрольный образец с известной толщиной. После этого следует коснуться пальцем надписи «Толщина» в окне, показанном на рис. 17. В результате откроется окно, показанное на рис. 20.

Рис. 20. Калибровка с заданием известной толщины объекта контроля

В этом окне, при помощи виртуальной цифровой клавиатуры, необходимо ввести известную толщину объекта контроля и нажать кнопку «ОК». При этом программа рассчитает скорость звука в материале и запишет это значение в прибор.

ВНИМАНИЕ!

Для повышения точности калибровки, рекомендуется увеличивать число накоплений (см. п. 1.3.3).

2.3.3 Калибровка с введением скорости звука

Для калибровки прибора по известной скорости звука нужно в окне, показанном на рис. 18, коснуться пальцем надписи «Скорость». В результате откроется окно, показанное на рис. 21.

Рис. 21. Калибровка с заданием скорости звука

В этом окне, при помощи виртуальной цифровой клавиатуры, необходимо ввести известную скорость звука для материала объекта контроля и нажать кнопку «ОК». При этом программа запишет это значение в прибор.

внимание!

Прибор использует поперечную волну, а не продольную. Среднее значение скорости распространения поперечной волны в стали составляет 3250 м/с.

3. МЕНЮ «НАСТРОЙКИ»

Для того чтобы попасть в меню основных настроек программы, нужно пальцем коснуться кнопки «Настройки» (см. рис. 22).

Рис. 22. Вход в основные настройки программы.

В результате откроется окно, показанное на рис. 23.

Окно позволяет задать следующие настройки программы:

- Имя оператора (имя учетной записи);
- Имя рабочей папки, в которую будут сохраняться результаты контроля;
- Цвет для отображения А-скана и стробов;
- Звук сигнализации превышения порогов для режима дефектоскопа.

Рис. 23 Настройки программы

Для выхода из настроек в обычный режим нужно нажать на окно «Измерение».

